

Reaktionen der Azadiboriridine: Clusterbildung und Ringerweiterung*

Peter Paetzold*^a, Burkhard Redenz-Stormanns^a und Roland Boese^b

Institut für Anorganische Chemie der Technischen Hochschule Aachen^a, Templergraben 55, W-5100 Aachen

Institut für Anorganische Chemie der Universität-Gesamthochschule Essen^b, Universitätsstraße 5-7, W-4300 Essen

Eingegangen am 27. Mai 1991

Key Words: Azadiboriridine / nido-Diazahexaborane / Azadiboroline / closo-Azadicarbadilithiaheptaborane / Diazatriborolidine

Reactions of the Azadiboriridines: Formation of Clusters and Ring Expansions*

Nine bis(haloboryl)amines 1 were synthesized by haloboration of iminoboranes $RB \equiv NR''$ with dihaloboranes R'BHal₂ [R/R'/ R'' = Et/iPr/tBu (1b), Et/sBu/tBu (c), iPr/iPr/iPr (d), iPr/tBu/iPriPr (e), tBu/Me/tBu (g), tBu/Et/tBu (h), $tBu/Et/SiMe_3$ (k), $tBu/tBu/SiMe_3$ (l), tBu/Cl/tBu (n)]. The borane 1n can be transformed into 10 (R' = NMe₂) by the reaction with Me₃SiNMe₂; an equilibrium between 10 and the four-membered ring 10' is observed, 10' being formed from 10 by intramolecular B-N coordination. On reduction with lithium, the *nido*-diazahexaboranes 3b-e, g, h are formed from the corresponding bis-(haloboryl)amines 1. In the case of 3e, g, h, the ligands R and R' are unsymmetrically distributed to axial and equatorial positions of the fragment structure derived from the pentagonal

Trialkylazadiboriridine $(-RN-BR-BR-)^{1,2}$ gehen unerwartete Reaktionen ein: Sie dimerisieren z. T. schon bei tiefer Temperatur zu Hexaalkyl-*nido*-diazahexaboranen^{1,2}, sie addieren die Lewissäure BH₃ an die BB-Bindung unter Bildung von Trialkyl-*nido*-azatetraboran(6)², und sie boroborieren das ungesättigte C-Atom von CO sowie unter Abspaltung von N₂ das α -N-Atom organischer Azide³. Wir beschreiben hier die Synthese weiterer Bis(halogenboryl)amine, ihre über Azadiboriridine verlaufende Enthalogenierung mit Alkalimetall zu *nido*-Diazahexaboranen sowie die Ringerweiterung eines Azadiboriridins mit einem Alkin und einem Iminoboran.

Darstellung von Bis(halogenboryl)aminen

Wir haben die Iminoborane $iPrB \equiv NiPr$, $RB \equiv NtBu$ (R = Me, Et, iPr, tBu) und $tBuB \equiv NSiMe_3$ mit jeweils einigen der sechs Halogenborane BCl₃, MeBBr₂ und RBCl₂ (R = Et, iPr, sBu, tBu) haloboriert und dabei nach Gl. (1) in meist guten Ausbeuten neun neue Bis(halogenboryl)amine 1 erhalten. Im Diborylamin Cl – B(tBu) – N(tBu) – BCl₂ (1n) läßt sich eines der drei Cl-Atome gezielt durch eine NMe₂-Gruppe austauschen, wenn man 1n nach Gl. (2) mit Me₂NSiMe₃ umsetzt. Die Konstitution der Bis(halogenboryl)amine läßt sich hinreichend gut aus den ¹H-, ¹¹B- und ¹³C-NMR-Spektren ableiten (Tab. 1).

Sechs unter den neun neuen Bis[halogen(organo)boryl]aminen weisen zwei ¹¹B-NMR-Signale auf, die trotz scheinbar ähnlich konstituierter B-Atome bis zu 25 ppm auseinanbipyramid. In particular cases, azadiboriridines of type 2 are either isolated or proven as intermediates on the way from 1 to 3. The three-membered ring of the known azadiboriridines 2i, m (R/R'/R'' = tBu/iPr/tBu, tBu/tBu/tBu) is expanded to the five-membered ring of the corresponding azadiborolines 4i, m by the reaction with 3-hexyne. The products 4i, m are reduced to the dilithium azadiborolinates 5i, m by the action of lithium; the molecular structure of a *closo-azadicarbadili*thiaheptaborane is recognized in crystals of 5i. The threemembered ring of 2m is also expanded by the reaction with the iminoborane EtB=NtBu giving the diazatriborolidin 6m, which crystallizes in the space group $Pca2_1$.

derliegen. Da es sich bei mindestens zwei der drei Liganden R, R', R" um sperrige Liganden handelt, führen wir die Verschiedenartigkeit der B-Atome in bekannter Art und Weise⁴⁾ darauf zurück, daß die Bindungsebene eines der beiden trigonal-planar koordinierten B-Atome senkrecht zur Bindungsebene des ebenfalls trigonal-planar koordinierten N-Atoms steht; das betroffene B-Atom kann dann keine BN- π -Bindung ausbilden und ist demzufolge weniger abgeschirmt als das andere B-Atom. - In den Produkten 1b, d, l wird trotz einer Sperrigkeit der Liganden, die mit der in den übrigen Diborylaminen vergleichbar ist, nur jeweils ein ¹¹B-NMR-Signal gefunden, und zwar bei einer chemischen Verschiebung, die mehr oder weniger in der Mitte zwischen den beiden Werten der übrigen Bis(halogenboryl)amine liegt. Wir nehmen an, daß bei 1b, d, I beide Borylgruppen in demselben Maße aus der BNB-Bindungsebene herausgedreht sind, aber auf dieser Ebene nicht senkrecht stehen, so daß noch gewisse BN- π -Bindungsanteile möglich sind. – Im Falle der Aminierung von 1n entsteht neben dem Produkt 10 noch dessen inneres Cycloaddukt 10', und zwar – den NMR-Spektren zufolge - in einer 5:3-Gleichgewichtsmischung [Gl. (2); Tab. 1]. Vergleichbare cyclische Amin-Borane im Gleichgewicht mit offenkettigen Diazoniadiboratabutadienen sind bekannt⁵⁾. Für die Konstitution sind die vier ¹¹B-NMR-Signale im Verhältnis 5:3 besonders aufschlußreich: Am meisten hochfeldverschoben liegt mit $\delta =$ 8.5 erwartungsgemäß das vierfach koordinierte B-Atom von 10', am meisten tieffeldverschoben mit $\delta = 42.6$ das mit

Tab.1.	Darstellung und	Charakterisier	ung der Bi	s(halogenboryl)a	mine vom Typ	1 [Gl. (1)]:	Stoffmengen der	r Ausgangsstoffe,	Siedepunkte
	der Produkte	e, Ausbeuten, ¹	¹ H-, ¹¹ B-, ¹³	C-NMR-Signale	: (δ-Werte), mo	lare Masser	n und elementar	analytische Date	n

	1 b	1c	1d	1e	1 g	1 h	1 j ^{a)}	1 k	11	1 n	1 o/1 o′ ^{b)}
n [mmol] Sdp. [°C/Pa]	25.5 39/0.2	57.0 59/5	12.0 57/150	20.0	20.9 38/0.2	19.4 32/0.1	40.0	20.0	18.0	20.0	17.2
Ausb. [%]	70	81	46	30	66	72	85	77	71	85	68
δ(¹ H) R	1.27 t 1.1 mc	0.7-1.2	1.05 d 1.4-1.8	1.02 d	1.15 s	1.10 s	1.02 s	1.12 s	1.01 s	1.10 s	1.12/0.73 2s
R′	1.05 d 1.4-1.7	0.7-1.2	1.05 d 1.4-1.8	1.08 s	0.90 s	1.1 mc	0.89 d 1.4-1.9	1.07 t 1.1 mc	1.01 s	/	2.38/2.15 2s
R ″	1. 41 s	1.31 s	1.37 d 4.37 sept	1.37 d 3.85 sept	1.45 s	1.45 s	0.31 s	0.37 s	0.37 s	1.47 s	1.41 s
δ(¹¹ B) ^{c)}	49.8	44.6 55.5	53.1	42.1 63.1	38.4 63.7	40.4 63.6	44 .1 64.5	44.2 63.2	54.0	28.9 64.7	42.6/8.5 32.0/39.0
$\delta(^{13}C) R^{d}$	5.8 q	9.1 g	18.9 q	18.7 g	29.7 g	29.2 q	28.4 g	28.4 q	28.6 g	29.2 q	29.4/29.5 2 g
R ^{*d)}	18.8 q	13.7 q 15.9 q 27.0 t	18.9 q	28.2 q	-	9.0 q	18.8 q	9.1 q	28.6 q	/	43.5/38.7 2q /39.4 q*)
R″	31.6 q 54.9 s	31.8 q 55.1 s	23.8 q 50.5 d	24.3 q 49.6 d	31.9 q 57.7 s	32.1 q 55.7 s	2.3 q	2.3 q	4.1 q	31.0 q 57.6 s	32.2/31.0 q 51.1/56.8 s
M [g/mol]	235.8	249.8	235.8	249.8	324.7	249.8	279.9	265.9	294.0	256.2	264.8
Ber. C	45.84	48.08	45.84	48.08	33.29	48.08	42.91	40.65	44.95	37.50	45.35
Gef. C	45.47	46.51	45.29	46.93	35.16	47.99	42.58	38.75	44.77	37.62	45.56
Ber. H	8.98	9.28	8.98	9.28	6.52	9.28	9.00	8.72	9.26	7.08	9.13
Gef. H	9.10	9.25	9.14	9.36	7.08	9.57	8. 94	8.83	9.27	7.72	9.23
Ber. N	5.94	5.61	5.94	5.61	4.31	5.61	5.00	5.27	4.76	5.47	10.58
Gef. N	6.14	5.75	6.62	5.72	4.36	5.61	5.24	5.58	5.12	5.56	10.60

^{a)} Über das Verfahren zur Herstellung von 1j wurde berichtet⁷, nicht aber über die analytischen Daten. – ^{b)} NMR-Spektren in C₆D₆, NMR-Signale von 10/0' im Verhältnis 5:3. – ⁶ Im allgemeinen ist nicht bekannt, welches von zwei ¹¹B-NMR-Signalen zu R und zu R" gehört; im Falle von 1g, o gehört der untere Wert wegen des abschirmenden Effekts von R'' = Cl, NMe₂ zu R" und im Falle von 10' ebenso wegen des abschirmenden Effekts der Vierfachkoordination des B(R)-Atoms. – ^{d)} Die erwartungsgemäß breiten ¹³C-NMR-Signale der *B*-gebundenen C-Atome werden nicht gefunden. – ^{e)} Wegen der freien Drehbarkeit der NMe₂-Gruppe in 10 sind die Me-Gruppen äquivalent, nicht aber bei 10'.

einer Alkylgruppe verknüpfte dreifach koordinierte B-Atom von 10, und auch die Signallagen der beiden anderen B-Atome entsprechen denen vergleichbarer Verbindungen der Literatur⁶⁾.

Enthalogenierung der Bis(halogenboryl)amine 1

Das Diborylamin 1m mit den drei sperrigen tBu-Liganden läßt sich mit Na/K-Legierung in bekannter Weise nach Gl. (3) zum Azadiboriridin 2m enthalogenieren, das bei Raumtemperatur lagerfähig ist¹⁾. Der ebenso aus 1i erhältliche Dreiring 2i, dessen Ligand-Korsett nur eine Methylgruppe weniger enthält, erweist sich als bei -78°C lagerfähig, dimerisiert aber beim Erwärmen auf Raumtemperatur nach Gl. (4) schnell zum nido-Diazahexaboran 3i²⁾. Auch der im sterischen Anspruch mit 2i vergleichbare Dreiring 2j mit einer SiMe₃- anstelle der das N-Atom wohl besser abschirmenden tBu-Gruppe erweist sich als instabil und geht schnell in die Cluster-Verbindung 3j über⁷). Ein Diborylamin mit sterisch wenig auffälligen B-Alkylgruppen wie 1a $(\mathbf{R} = \mathbf{R}' = \mathbf{M}\mathbf{e})$ ergibt bei -78° C mit Lithium spontan die Cluster-Verbindung 3a, die röntgenstrukturanalytisch als das nido-Fragment einer pentagonalen Bipyramide mit C_{2v} -Symmetrie gesichert ist¹. Wir haben nunmehr die Diborylamine 1b-e, g, h mit Lithium zu den entsprechenden Cluster-Verbindungen vom Typ 3 reduziert, ohne Dreiringe vom Typ 2 als Zwischenprodukte isolieren zu können. Die Produkte 3b, c erwiesen sich zwar als elementaranalytisch rein, doch waren ihre komplizierten ¹H- und ¹³C-NMR-Spektren nicht mit eindeutigen Konstitutionsaussagen zu verknüpfen, so daß sie im experimentellen Teil nicht beschrieben werden. Die Hexaisopropyl-Verbindung 3d enthält nur drei Sorten von Me-Gruppen, nämlich für iPr an N, B_a und B_e , wie man es für eine Konstitution mit C_{2p} -Symmetrie erwarten muß (B_a und B_e bedeuten Boratome in axialer bzw. äquatorialer Lage bezüglich der zugehörigen pentagonalen Bipyramide). Die erfahrungsgemäß breiten ¹³C-NMR-Signale borgebundener C-Atome haben wir weReaktionen der Azadiboriridine: Clusterbildung und Ringerweiterung

der bei 3d noch bei den meisten anderen Produkten eindeutig auffinden können. Die neuen Produkte 3g, h mit unterschiedlichen Bor-Liganden R und R' erwiesen sich unter den drei denkbaren Isomeren als diejenigen mit C_1 -Symmetrie, also mit R in axialer und äquatorialer Position und nicht mit R in entweder nur axialer oder nur äquatorialer Position und jeweils umgekehrt für R'. Dies folgt aus der Beobachtung von vier ¹¹B-NMR-Signalen und vier ¹H- und ¹³C-NMR-Signalen für die Me-Gruppen von BtBu und NtBu in jeweils gleicher Intensität. Auch für 3e vermuten wir eine C₁-Konstitution, auch wenn nur zwei ¹¹B-NMR-Signale gefunden wurden; denn wir konnten die acht ¹³C-NMR-Signale der acht nicht-äquivalenten Me-Gruppen vierer nicht äquivalenter iPr-Gruppen auflösen. Auch der Verbindung **3i** hatten wir seinerzeit eine C_1 -Struktur zugrunde gelegt¹⁾. Die erwähnten komplexen NMR-Spektren von **3b**, c mögen auf das Vorliegen einer Mischung zweier oder dreier Isomerer zurückzuführen sein, die sich in Anwesenheit der sterisch anspruchslosen Et-Gruppen eher bilden könnten.

Die bevorzugte bis ausschließliche Bildung des Isomeren mit C_1 -Symmetrie wirft die Frage nach dem Mechanismus der Bildung der Cluster-Moleküle 3 aus zwei Azadiboriridin-Molekülen 2 auf. Die bei – 78 °C quantitativ ablaufende Addition von BH₃ an die BB-Bindung der Dreiringe 2i, m² legt nahe, als ersten Schritt der Bildung von 3 aus 2 ein Gleichgewicht anzuschen, bei dem sich ein B-Atom eines Moleküls 2 an die BB-Bindung eines zweiten addiert. Dabei wird das B-Atom mit dem kleineren Liganden R [Gl. (5a)] leichter eine BB-Bindung angreifen als das B-Atom mit dem

sperrigen Liganden R' [Gl. (5a')]. Verbindet sich im Folgeschritt (5b) das N-Atom des einen mit einem B-Atom des anderen Dreirings, so hat man mit dem Angriff an BR bevorzugt vor dem an BR', also mit den Schritten $(5b_1)$ und $(5b_1')$ bevorzugt vor $(5b_2)$ bzw. $(5b_2')$ zu rechnen. In den gebildeten tetracyclischen Zwischenstufen bedingen je drei aneinandergrenzende Dreiecksebenen *exo-* und *endo*-Faltungen. Unter den vier Faltungskombinationen ist es die *endo,endo*-Anordnung, in der die Produkt-Struktur so weit präformiert ist, daß es zu ihrer Bildung nur noch des Reaktionsschritts (5c) bedarf. Im Falle deutlich unterschiedlichen Raumbedarfs von R und R' bei insgesamt großem Bedarf

führt der Schritt (5c₁) zum mechanistisch bevorzugten Produkt mit C_1 -Symmetrie, gefolgt von Schritt (5c₂) (C_{2v}), dann Schritt (5c₁') (C_{2v}), dann (5c₂') (C_1).

Ringerweiterung mit 3-Hexin

Seit langem ist bekannt, daß Derivate B_2X_4 von Diboran(4) Alkine an der Dreifachbindung "boroborieren" können, d.h. die Dreifachbindung erfährt eine 1,2-Addition je einer Borylgruppe. Die Azadiboriridine müssen als cyclische Diboran(4)-Derivate mit erheblicher Ringspannung hervorragende Boroborierungsmittel sein, selbst wenn sperrige Gruppen wie tBu oder iPr die BB-Bindung flankieren. In der Tat addieren sich die Azadiboriridine 2i, m glatt nach Gl. (6) an 3-Hexin zu den Azadiborolinen 4i, m. Ihre Konstitution folgt u.a. aus den NMR-Spektren. Z.B. kann man aus dem Zusammenfallen der ¹¹B-NMR-Signale beider B-Atome ableiten, daß nicht etwa anstelle der Boroborierung eine Aminoborierung von 3-Hexin zum 1,2,3-Azadiborolin stattgefunden hat, die zu einer bedeutenden Tieffeldverschiebung für das nicht N-gebundene B-Atom hätte führen müssen. Es handelt sich bei 4i, m um Vertreter einer auch auf anderem Wege zugänglichen Substanzklasse⁸⁾.

Die Reaktion von 4i. m mit Lithium, die ursprünglich der Gewinnung Hückelscher 6- π -Elektronenspezies [4i]²⁻ bzw. $[4m]^{2-}$ hätte dienen sollen, führte zur pentahapto-Addition der kleinen Li-Atome oberhalb und unterhalb des Azadiborolin-Gerüsts gemäß Gl. (7). Die Konstitution des Produkts 5i mit je einem an Li gebundenen THF-Molekül geht im kristallinen Zustand aus einer Röntgenstrukturanalyse hervor, die wegen starker Fehlordnung der THF-Moleküle leider nicht über einen R-Wert von 0.18 hinaus verfeinert werden konnte. Die pentagonal-bipyramidale Struktur wird durch die Strukturanalyse aber klar bewiesen. Wir nehmen an, daß diese Struktur in der Lösung von 5i in C₆D₆ erhalten bleibt, da ein dianionischer Azadiborolinat-Rest ein Kation [Li(THF)]⁺ sicher besser bindet als ein neutrales Benzol-Molekül. Das Produkt 5m ist den vergleichbaren NMR-Signalen zufolge ebenso aufgebaut wie 5i. Da am Aufbau

des siebenatomigen bipyramidalen Gerüsts acht Elektronenpaare beteiligt sind, handelt es sich bei **5***i*, **m** um Cluster-Verbindungen vom *closo*-Typ.

Ringerweiterung mit Iminoboran

Iminoborane $RB \equiv NR'$ sind mit Alkinen $RC \equiv CR'$ isoelektronisch⁹. Die Verbindung $EtB \equiv NtBu$ ergibt mit dem Azadiboriridin **2m** eine ähnliche Ringerweiterung wie das Alkin $EtC \equiv CEt$, und zwar erhält man nach Gl. (8) den Fünfring **6m**. Fünfringe dieses Typs mit *B*-gebundenen Aminogruppen lassen sich auch durch Abspaltung von LiCl aus dem Diaminoboran LiN(Me) – BR – N(Me)Li und dem Diboran(4) Cl – B(NMe₂) – B(NMe₂) – Cl erhalten¹⁰. Der Versuch, das 4- π -Elektronen-System **6m** analog zu Gl. (7) mit Lithium zu reduzieren, führt zu einem Gemisch von Produkten, die wir nicht aufklären konnten.

Die Struktur von 6m im Kristall ist in Abb. 1 wiedergegeben, die Atomkoordinaten gehen aus Tab. 2, ausgewählte Bindungsabstände und -winkel aus Tab. 3 hervor. Im zentralen Fünfringgerüst bildet die trapezartige planare Atomgruppierung N1 - B2 - B1 - N2 mit dem Dreieck N1 - B3 - B3 - B3N2 einen Winkel von 124.6°. Während die Atome N1, N2, B1, B2 mit einer Bindungswinkel-Summe von je 360° trigonal planar koordiniert sind, ist dies beim Atom B3 mit einer Winkelsumme von 358.2° nicht ganz der Fall; vielmehr entgeht die tBu-Gruppe am Atom B3 durch endocyclische Abknickung einer zu großen sterischen Wechselwirkung mit den N-gebundenen tBu-Gruppen [intramolekulare, nichtbindende H...H-Kontakte zwischen den Methylprotonen: 200 pm (C3/C12), 216 pm (C6/C10), 222 pm (C8/C11)]. Die mit 23.9 und 30.6° erheblich von null verschiedenen Diederwinkel B1-B2-N1-B3 bzw. B2-B1-N2-B3verhindern eine optimale Überlappung der p-Orbitale für die Bindungen B2 - N1 und B1 - N2. Die entsprechenden B-N-Abstände liegen daher mit 140.8 bzw. 140.9 pm im oberen Bereich für BN-Doppelbindungen und sind vergleichbar mit denen in 1,3-Diethyl-2-methyl-1,3,2diazaborolidin¹¹ (Mittelwert 140.9 pm) und im offenkettigen Bis(methylamino)methylboran¹²⁾ (Mittelwert 141.6 pm), Verbindungen, in denen die Konkurrenz zweier N-Atome um das B-Atom die BN-Doppelbindungen schwächt. Die Abstände B3 – N1 und B3 – N2 sind mit 147.6 bzw. 149.2 pm eher im Bereich von BN-Einfachbindungen zwischen jeweils dreifach koordinierten B- und N-Atomen anzusiedeln¹³⁾. Diederwinkel von 55.2 bzw. 51.6° für B1 - N2 - B3 - N1und B2-N1-B3-N2 lassen keine ausgeprägten π -Bindungen mehr zu. Der BB-Abstand (178.9 pm) ist größer als in B,B'-Bis(1,3-dimethyl-1,3,2-diazaborolidin-2-yl) (169.3

pm)¹⁴⁾, in welchem die BN-Doppelbindungen (141.3 pm) jedoch vergleichbar mit denen in 6m sind.

Abb. 1. Struktur von 6m. Die Ellipsoide umfassen 50% der Aufenthaltswahrscheinlichkeit der Elektronen, die Wasserstoffatome sind weggelassen

Die Struktur von **6m** in Lösung wirft Fragen auf. Das ¹¹B-NMR-Signal für B3 liegt mit $\delta = 31.1$ in einem Bereich, der für Alkyldiaminoborane mit optimaler π -Bindung typisch ist⁶. Liegt etwa das Atom B3 in Lösung in der Ebene eines planaren Fünfrings? Die ¹¹B-NMR-Signale für B1, B2 hätte man oberhalb $\delta = 50$ erwartet und nicht auffällig hochfeldverschoben bei $\delta = 43.4$. Bemerkenswerterweise ist das Produkt **6m** zwar im kristallinen Zustand lagerfähig, zersetzt sich aber in Lösung bei Raumtemperatur im Verlauf weniger Stunden.

Tab. 2. Atomkoordinaten (× 10^4) und äquivalente isotrope Werte U von 6m, berechnet als ein Drittel des orthogonalisierten U_{ij} -Tensors

	x	У	Z	U
N1	-36(1)	8002(1)	3034(1)	16(1)
N2	896(1)	6570(1)	2125(1)	15(1)
B1	1518(1)	7454(1)	2189(1)	16(1)
в2	856(1)	8463(1)	2912(2)	16(1)
в3	33(1)	7246(1)	2090(1)	16(1)
C1	-811(1)	8215(1)	3817(1)	20(1)
C2	-1194(1)	9376(1)	3744(2)	28(1)
C3	-1592(1)	7389(1)	3632(2)	26(1)
C4	-418(1)	8022(1)	4983(1)	24(1)
C5	978(1)	5369(1)	2105(2)	20(1)
C6	103(1)	4899(1)	2662(2)	28(1)
C7	1808(1)	5046(1)	2834(2)	26(1)
C8	1087(1)	4872(1)	950(2)	29(1)
C9	-599(1)	7347(1)	977(1)	20(1)
C10	-1257(1)	6386(1)	738(2)	27(1)
c11	92(1)	7442(1)	0	26(1)
C12	-1181(1)	8400(1)	955(2)	26(1)
c13	2575(1)	7607(1)	1783(2)	20(1)
C14	2656(1)	8746(1)	1257(2)	27(1)
C15	3241(1)	7565(1)	2779(2)	29(1)
C16	2914(1)	6798(1)	892(2)	29(1)
C17	1188(1)	9605(1)	3378(1)	22(1)
C18	964(1)	10534(1)	2568(2)	32(1)

Tab. 3. Ausgewählte Bindungslängen [pm] und -winkel [°] von $6m^{\overline{a}_j}$

N1-B2	140.6(2)	B2-N1-B3	96.4(1)
B2-B1	178.9(2)	B2-N1-C1	132.7(1)
B1-N2	140.4(2)	B3-N1-C1	130.9(1)
N2-B3	149.1(2)	B1-N2-B3	95.6(1)
B3-N1	147.6(2)	B1-N2-C5	136.0(1)
N1-C1	148.3(2)	B3-N2-C5	128.4(1)
N2-C6	148.2(2)	N2-B1-B2	103.1(1)
B3-C9	162.7(2)	N2-B1-C13	132.2(1)
B1-C13	160.6(2)	B2-B1-C13	124.7(1)
B2-C17	158.7(2)	N1-B2-B1	104.8(1)
C17-C18	153.8(2)	N1-B2-C17	126.3(1)
C1-C2	153.1(2)	B1-B2-C17	128,9(1)
C1-C3	152.9(2)	N1-B3-N2	112.7(1)
C1-C4	153.6(2)	N1-B3-C9	123.6(1)
		N2-B3-C9	121.9(1)

 $^{a)}$ 13 C–C-Abstände: 153.8 pm (Mittelwert; Extremwerte: 152.9 und 154.6 pm). 25 Winkel mit C-Atomen als Scheitel: 109.5 $^{\circ}$ (Mittelwert; Extremwerte 105.7 und 115.8 $^{\circ}$).

Wir danken der Deutschen Forschungsgemeinschaft für die Förderung dieser Arbeit.

Experimenteller Teil

NMR: Bruker WP 80 SY (¹H), Jeol JNM-PS-100 (¹¹B), Bruker WH 270 (¹³C); in CDCl₃. – CHN-Analysen: Carlo-Erba-Elemental-Analyzer 1106.

tert-Butyl(chlorethylboryl)(chlorisopropylboryl)amin (1b), tert-Butyl(sec-butylchlorboryl)(chlorethylboryl)amin (1c), Bis(chlorisopropylboryl) isopropylamin (1d), (tert-Butylchlorboryl) (chlorisopropylboryl)isopropylamin (1e), (Brom-tert-butylboryl)(brommethylboryl)-tert-butylamin (1g), tert-Butyl(tert-butylchlorboryl)(chlorethylboryl)amin (1h), (tert-Butylchlorboryl)(chlorisopropylboryl)-(trimethylsilyl)amin (1j), (tert-Butylchlorboryl)(chlorethylboryl)-(trimethylsilyl)amin (1k), Bis(tert-butylchlorboryl)(trimethylsilyl)amin (11), tert-Butyl(tert-butylchlorboryl)(dichlorboryl)amin (1n), tert-Butyl(tert-butylchlorboryl)[chlor(dimethylamino)boryl]amin (10): Das zur Darstellung von 1b-n nach Gl. (1) benötigte Iminoboran $\mathbf{RB} \equiv \mathbf{NR}''$ ($\mathbf{R/R}'' = \mathbf{Et}/t\mathbf{Bu}^{15}$), $i\mathbf{Pr}/i\mathbf{Pr}^{16}$), $i\mathbf{Pr}/t\mathbf{Bu}^{17}$), $t\mathbf{Bu}/t\mathbf{Bu}^{17}$) $tBu^{(4)}$, $tBu/SiMe_3^{(18)}$) wird bei -78 °C in 10 ml Pentan vorgelegt und die gleiche Menge an Chlorboran R'BCl₂ ungelöst zugetropft (im Falle von $\mathbf{R}' = \mathbf{C}\mathbf{I}$ aus einem gekühlten Tropfrichter). Man läßt 1 h bei Raumtemp. rühren. Dann wird destillativ aufgearbeitet. Zur Darstellung von 10 wird 1n bei -10° C in 10 ml Pentan vorgelegt, die gleiche Menge an Silylamin Me₃SiNMe₂ in 5 ml Pentan zugetropft und die Mischung 2 h bei Raumtemp. gerührt; das Produkt 10 kristallisiert aus Pentan und wird noch einmal umgefällt. Weitere Angaben finden sich in Tab. 1.

Hexaisopropyl-3,5-diaza-nido-hexaboran(6) (3d): Zu 240 mg (34.6 mmol) Lithium unter 10 ml THF tropft man bei 0°C 2.08 g (8.82 mmol) 1d, rührt 1 h bei 0°C, engt die Lösung bei 0°C ein und nimmt den Rückstand in 30 ml Hexan auf. Man filtriert, entfernt alles bei 60°C/0.002 Torr Flüchtige und kristallisiert bei -80°C aus Diethylether 490 mg (34%) 3d. - ¹H-NMR: $\delta = 0.98$ (d, J = 6.0 Hz; 24H, Me von BiPr), 1.20 (d, J = 7.0 Hz; 12H, Me von NiPr), 1.3 - 1.8 (4H, CH von BiPr), 1.20 (sept, J = 7.0 Hz; 2H, CH von NiPr). - ¹¹B-NMR: $\delta = -17.3$, 2.6 (1:1). - ¹³C-NMR: $\delta = 22.4$, 22.8, 23.7 (3 q; Me von BiPr und NiPr), 45.7 (d, NCH).

 1.4-Di-tert-butyl-2,3,5,6-tetraisopropyl-3,5-diaza-nido-hexaboran-(6) (3e): Ebenso erhält man aus 900 mg (3.60 mmol) 1e mit dem vierfachen Überschuß an Lithium 320 mg (50%) 3e. – ¹H-NMR: $\delta = 0.97$ (d, J = 6.0 Hz; 12 H, Me von BiPr), 1.09 (s; 18 H, tBu), 1.9 (mc; 2H, BCH), 1.21 (d, J = 7.0 Hz; 12H, Me von NiPr), 3.45 (sept, J = 7.0 Hz; 2H, NCH). – ¹¹B-NMR: $\delta = -14.7$, 3.8 (1:1). – ¹³C-NMR: $\delta = 22.2$, 22.8, 22.9, 23.4, 23.9, 24.0, 24.6 24.9 (8 q; Me von BiPr und NiPr), 32.3 (q; C2 von tBu), 45.6 (d; C1 von NiPr)

NiPr). $C_{20}H_{46}B_4N_2$ (357.8) Ber. C 67.13 H 12.96 N 7.83 Gef. C 67.14 H 12.96 N 7.68

1,3,4,5-Tetra-tert-butyl-2,6-dimethyl-3,5-diaza-nido-hexaboran(6) (3g): 1.56 g (4.80 mmol) 1g und der vierfache Überschuß an Lithium werden in Gegenwart von 4 ml Tetramethylethylendiamin 50 h in 10 ml Hexan unter Rückfluß erhitzt. Nach Filtrieren und Einengen i. Vak. kristallisieren aus Pentan bei - 80 °C 200 mg (25%) 3g. -NMR-Spektren mit Varian VXR 300. - ¹H-NMR: $\delta = 0.25, 0.62$ (2 s; je 3 H, Me), 1.05, 1.20 (2 s; je 9 H, Bt Bu), 1.37, 1.47 (2 s; je 9 H, NtBu). $-{}^{11}$ B-NMR: $\delta = -18.4, -14.2$ (2 s; axiale Position), 0.4, 6.4 (2 s; äquatoriale Position). Die Zuordnung der Gerüstpositionen ist möglich wegen eines Kreuzpeaks zwischen den äquatorialen B-Atomen im 2D-11B-11B-NMR-Spektrum; Kreuzpeaks zwischen B-Atomen, die in Clustergerüsten an dasselbe N-Atom gebunden sind, werden nicht ohne weiteres beobachtet¹⁹⁾, also auch nicht für dic Kopplung von axialem und äquatorialem B in unserem Fall. -¹³C-NMR: $\delta = 31.9, 32.1, 32.2, 32.8$ (4 q; C2 von BtBu und NtBu), 54.3, 54.6 (2 s; C1 von NtBu).

$\begin{array}{c} C_{18}H_{42}B_4N_2 \ (329.8) \\ Gef. \ C \ 65.56 \ H \ 12.84 \ N \ 8.49 \\ Gef. \ C \ 66.15 \ H \ 13.01 \ N \ 8.62 \end{array}$

1,3,4,5-Tetra-tert-butyl-2,6-diethyl-3,5-diaza-nido-hexaboran(6) (**3h**): Wie für **3d** beschrieben, erhält man aus 2.90 g (11.6 mmol) **1h** und 46 mmol Lithium 1.10 g (53%) **3h**. - ¹H-NMR: δ = 1.00, 1.20 (2 s; je 9H, BtBu), 1.39, 1.45 (2 s; je 9H, NtBu); ein breites Signal für BEt wird durch die tBu-Signale verdeckt. - ¹¹B-NMR: δ = -17.4, -15.1, 0.7, 6.3 (1:1:1:1). - ¹³C-NMR: δ = 13.1 (q; Me von Et), 31.7, 32.1, 32.7 (3 q im Verh. 2:1:1; C2 von BtBu und NtBu), 54.3, 54.5 (2 s; C1 von NtBu).

$\begin{array}{c} C_{20}H_{46}B_4N_2 \ (357.8) \\ \text{ Ber. C } 67.13 \ H \ 12.96 \ N \ 7.83 \\ \text{ Gef. C } 66.66 \ H \ 12.96 \ N \ 7.97 \end{array}$

1,2-Di-tert-butyl-3,4-diethyl-2,5-dihydro-5-isopropyl-1H-1,2,5azadiborol (4i): Zu 1.89 g (9.8 mmol) 2i in 10 ml Pentan gibt man bei -78 °C 0.82 g (10.0 mmol) 3-Hexin. Die destillative Aufarbeitung erbringt bei Sdp. 51 °C/0.002 Torr 0.97 g (36%) nicht analysenreines 4i. – ¹H-NMR: δ = 0.98 (t, J = 7.0 Hz; 6H, Me von Et), 1.06 (s; 9H, BtBu), 1.34 (s; 9H, NtBu), 2.34 (q, J = 7.0 Hz; 4H, CH₂); breite Signale für BiPr sind verdeckt. – ¹¹B-NMR: δ = 53.0. – ¹³C-NMR: δ = 14.8, 15.2 (2 q; Me von Et), 18.1 (q; Me von iPr), 21.4, 22.1 (2 t; CH₂), 30.0 (q; C2 von BtBu), 33.4 (q; C2 von NtBu), 52.4 (s; C1 von NtBu), 154, 167 (2 s; C=C).

1,2,5-Tri-tert-butyl-3,4-diethyl-2,5-dihydro-1H-1,2,5-azadiborol (4m): Bei -78 °C tropft man zu 4.20 g (20.3 mmol) 2m in 20 ml Pentan eine Lösung von 1.72 g (20.9 mmol) 3-Hexin in 5 ml Pentan. Nach 20min. Rühren bei 25 °C werden die flüchtigen Anteile i. Vak. entfernt. Aus Ether kristallisiert man 3.00 g (51%) 4m. – ¹H-NMR: $\delta = 0.94$ (t, J = 7.0 Hz; 6H, Me von Et), 1.06 (s; 18H, BtBu), 1.36 (s; 9H, NtBu), 2.31 (q, J = 7.0 Hz; 4H, CH₂). – ¹¹B-NMR: $\delta = 55.0$. – ¹³C-NMR: $\delta = 15.3$ (q; Me von Et), 21.8 (t; CH₂), 29.7 (q; C2 von BtBu), 33.8 (q; C2 von NtBu), 53.8 (s; C1 von NtBu), 164 (s; C=C).

$$C_{18}H_{37}B_2N$$
 (289.1) Ber. C 74.78 H 12.90 N 4.84
Gef. C 74.70 H 12.86 N 4.83

2,3-Di-tert-butyl-4,5-diethyl-6-isopropyl-1,7-bis(tetrahydrofuran)-2-aza-4,5-dicarba-1,7-dilithia-closo-heptaboran, Bis[(tetrahydrofuran)lithium]-(1,2-di-tert-butyl-3,4-diethyl-2,5-dihydro-5-isopropyl-1H-1,2,5-azadiborolat) (5i): In einer Lösung von 820 mg (10.0 mmol) 3-Hexin in 20 ml THF suspendiert man 420 mg (60.5 ml) Lithium und tropft in die Suspension bei -78 °C eine Lösung von 2.60 g (9.85 mmol) des Diborylamins 1i in 5 ml Pentan. Man bringt die Suspension unter Rühren auf Raumtemp., engt ein, nimmt in 30 ml Pentan auf, filtriert und kristallisiert dann bei -25 °C 1.74 g (41%) 5i. - ¹H-NMR (C₆D₆): $\delta = 1.23$ (mc; 8H, β -CH₂ von THF), 1.34 (t, J = 7.0 Hz; 6H, Mc von Et), 1.67 (d, J = 7.0 Hz; 6H, Me von iPr), 1.75 (s; 9H, BtBu), 1.79 (s; 9H, NtBu), 2.1-2.5 (1H, CH von *i*Pr), 2.80, 2.89 (2 q; J = 7.0 Hz, 4H, CH₂ von Et), 3.31 (mc; 8H, α-CH₂ von THF). $-{}^{11}$ B-NMR (C₆D₆): δ = 23.0, 24.5. $-{}^{13}$ C-NMR (C₆D₆): $\delta = 22.1, 22.5$ (t, q; Et), 25.3 (t; β -CH₂ von THF), 26.3 (q; Me von iPr), 37.6 (q; C2 von BtBu), 37.7 (q; C2 von NtBu), 53.7 (s; C1 von NtBu), 60.0 (t; α -CH₂ von THF). – Die Röntgenstrukturanalyse von 5i wurde mit Mo- K_{α} -Strahlung bei 200 K durchgeführt. Es ergab sich eine monokline Zelle mit a = 1485.4(2), $b = 1001.7(2), c = 2000.6(4) \text{ pm}, \beta = 105.98(1)^{\circ}, V = 2.861(8) \text{ nm}^3,$ Z = 4, Raumgruppe C2/c, Molekülsymmetrie C_2 . Wegen Fehlordnung im Bereich von THF konnte die Struktur nur bis R = 0.18verfeinert werden.

2,3,6-Tri-tert-butyl-4,5-diethyl-1,7-bis(tetrahydrofuran)-2-aza-4,5-dicarba-1,7-dilithia-closo-heptaboran, Bis[(tetrahydrofuran)lithium]-(1,2,5-tri-tert-butyl-3,4-diethyl-2,5-dihydro-1H-1,2,5-azadiborolat) (**5m**): Eine Lösung von 2.89 g (10.0 mmol) **4m** in 20 ml THF wird bei 0°C mit 0.28 g (40.3 mmol) Lithium versetzt. Nach 30min. Rühren bei Raumtemp. filtriert man von überschüssigem Lithium, bringt zur Trockne und kristallisiert bei 25°C aus Pentan 3.31 g (74%) **5i**. – ¹H-NMR (C₆D₆): δ = 1.16 (mc; 8H, β-CH₂ von THF), 1.37 (t, J = 7.0 Hz; 6H, Me von Et), 1.77 (s; 18H, BtBu), 2.08 (s; 9 H, NtBu), 2.94 (q; J = 7.0 Hz; 4H, CH₂ von Et), 3.34 (mc; 8H, α -CH₂ von THF). – ¹¹B-NMR (C₆D₆): δ = 25.7. – ¹³C-NMR (C₆D₆): δ = 22.5, 22.7 (q, t; Et), 25.2 (t; β-CH₂ von THF), 37.5 (q; C2 von BtBu), 38.4 (q; C2 von NtBu), 52.9 (s, C1 von NtBu), 69.1 (t; α -CH₂ von THF).

$\begin{array}{rl} C_{26}H_{53}B_{2}Li_{2}NO_{2} \ (447.2) & \mbox{Ber. C} \ 69.83 \ H \ 11.95 \ N \ 3.13 \\ & \mbox{Gef. C} \ 68.41 \ H \ 11.85 \ N \ 3.13 \end{array}$

1,2,3,4-Tetra-tert-butyl-5-ethyl-1,3,2,4,5-diazatriborolidin (6m): Zu einer Lösung von 440 mg (3.96 mmol) (tert-Butylimino)ethylboran⁵⁾ in 10 ml Pentan gibt man bei -78 °C 830 mg (3.99 mmol) 2m. Nach 30min. Rühren bei -78 °C werden die flüchtigen Anteile bei Raumtemp. i. Vak. entfernt. Der Rückstand wird in Diethylether gelöst. Bei -25 °C kristallisieren 890 mg (70%) 6m. - ¹H-NMR: $\delta = 0.99, 1.11$ (2 s; je 9 H, BtBu), 1.36, 1.37 (2 s; je 9 H, NtBu), 1.01 (t; 3H, Me von Et; das breite Signal für CH₂ von Et wird durch die übrigen Signale verdeckt). - ¹¹B-NMR: $\delta = 31.1, 43.4$ (2 s; im Verh. 1:2). - ¹³C-NMR: $\delta = 9.2$ (q; Me von Et), 11.4 (t; CH₂ von Et), 30.4, 32.9 (2 q; C2 von BtBu), 33.0, 33.5 (2 q; C2 von NtBu); 54.7 (s; C1 von NtBu).

Röntgenstrukturanalyse von 6m: Ein Kristall der Größe $0.28 \cdot 0.24 \cdot 0.17 \text{ mm}^3$ wurde mit einem R3-Nicolet-Vierkreisdiffraktometer bei 103 K vermessen (Mo- K_{α} -Strahlung, Graphitmonochromator). Zelldaten: a = 1434.4(2), b = 1229.7(2), c = 1208.5(2) pm, $V = 2.1384(12) \text{ nm}^3$, $D_{\text{ber}} = 0.991$ g cm⁻³, Z = 4. Raumgruppe $Pca2_1$ (Nr. 29). 4294 unabhängige Intensitäten ($2\theta_{\text{max}} = 55^{\circ}$), davon 3941 beobachtet [$F_o \ge 4\sigma(F)$]. Die Struktur wurde mit direkten Methoden gelöst; Programm: SHELXTL, Rechner Micro-VAX II. R = 0.037, $R_w = 0.038$, $w^{-1} = \sigma^2(F_o) + 0.00046$

 F_0^2 . Maximale Restelektronendichte $0.35 \cdot 10^{-6} e \text{ pm}^{-3}$. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-320260, der Autoren und des Zeitschriftenzitats angefordert werden.

CAS-Registry-Nummern

1b: 136342-42-2 / 1c: 136342-43-3 / 1d: 136342-44-4 / 1e: 136342-45-5 / 1g: 136342-46-6 / 1h: 136342-47-7 / 1j: 136342-48-8 / 1k: 136342-49-9 / 1l: 136342-50-2 / 1n: 136342-51-3 / 1o: 136342-52-4 / 1o': 136342-56-8 / 2i: 128497-14-3 / 2m: 109976-00-3 / 3d: 136342-57-9 / 3e: 136342-58-0 / 3g: 136342-59-1 / 3h: 136342-50-2 / 4i: 136342-53-5 / 4m: 136342-54-6 / 5i: 136378-89-7 / 5m: 136342-51-61 / 10-2142-55 / 10-2142-51 / 5m: 23282-7 / 5m: 23822-7 / 5m: 23822-7 / 5m: 23822-7 / 5m: 2382-7 / 5m: 2382-7 / 5m: 23822-7 / 5m: 2382-7 /126342-61-5 / 6m: $136342-55-7 / EtB \equiv NtBu$: $83183-09-9 / iPrB \equiv NtPr$: $90755-92-3 / iPrB \equiv NtBu$: $93109-71-8 / tBuB \equiv NtBu$: $89786-99-2 / tBuB \equiv NSiMe_3$: 118331-73-0 / EtC \equiv CEt: 928-49-4

- ^{*} Frau Professor Marianne Baudler zum 70. Geburtstag gewidmet. ¹⁾ R. Boese, B. Kröckert, P. Paetzold, Chem. Ber. **120** (1987) 1913. ²⁾ P. Paetzold, B. Redenz-Stormanns, R. Boese, M. Bühl, P. von Ragué Schleyer, Angew. Chem. 102 (1990) 1059; Angew. Chem.
- Int. Ed. Engl. 29 (1990) 3286.

- ³⁾ P. Paetzold, B. Redenz-Stormanns, R. Boese, Angew. Chem. 102
- (1990) 900; Angew. Chem. Int. Ed. Engl. 29 (1990) 910.
 P. Paetzold, C. von Plotho, G. Schmid, R. Boese, B. Schrader, D. Bougeard, U. Pfeiffer, R. Gleiter, W. Schäfer, Chem. Ber. 117 (1997) 117 (1984) 1089.
- ⁵⁾ H. Nöth, P. Otto, W. Storch, Chem. Ber. 119 (1986) 2517.
- ⁶⁾ H. Nöth, B. Wrackmeyer, Nuclear Magnetic Resonance Spec-troscopy of Boron Compounds in NMR, Grundlagen und Fortschritte, Bd. 14, Springer, Berlin 1978.
- ⁷⁾ P. Paetzold, B. Redenz-Stormanns, Inorg. Synth. 28 (1991), im Druck.
- ⁸⁾ W. Siebert, H. Schmidt, R. Full, Z. Naturforsch., Teil B, 35 (1980) 873
- ⁹⁾ P. Paetzold, Adv. Inorg. Chem. 31 (1987) 123.

- ¹⁰ F. Faetzoid, Aut. Inorg. Chem. 51 (1967) 122.
 ¹⁰ H. Nöth, G. Abeler, Chem. Ber. 101 (1968) 969.
 ¹¹ G. Schmid, M. Polk, R. Boese, Inorg. Chem. 29 (1990) 4421.
 ¹² N. Niederprüm, R. Boese, G. Schmid, Z. Naturforsch., Teil B, 46 (1991) 84.
- ¹³⁾ H. Nöth, R. Staudigl, W. Storch, Chem. Ber. 114 (1981) 3024. ¹⁴ H. Fußstetter, J. C. Huffman, H. Nöth, R. Schaeffer, Z. Na-turforsch., Teil B, **31** (1976) 1441.
- ¹⁵⁾ P. Paetzold, C. von Plotho, Chem. Ber. 115 (1982) 2819.
- ¹⁶⁾ H.-U. Meier, P. Paetzold, E. Schröder, Chem. Ber. 117 (1984) 1954.
- ¹⁷⁾ P. Paetzold, C. von Plotho, G. Schmid, R. Boese, Z. Naturforsch., Teil B, 39 (1984) 1069.
- ¹⁸⁾ K.-H. van Bonn, T. von Bennigsen-Mackiewicz, J. Kiesgen, C. von Plotho, P. Paetzold, Z. Naturforsch., Teil B, 43 (1988) 61.
- ¹⁹⁾ J. Müller, P. Paetzold, R. Boese, Heteroatom Chem. 1 (1990) 461.

[212/91]